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Dynamics of driven interfaces near isotropic percolation transition
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We consider the dynamics and kinetic roughening of interfaces embedded in uniformly random media near
percolation treshold. In particular, we study simple discrete ‘‘forest fire’’ lattice models through Monte Carlo
simulations in two and three spatial dimensions. An interface generated in the models is found to display
complex behavior. Away from the percolation transition, the interface is self-affine with asymptotic dynamics
consistent with the Kardar-Parisi-Zhang universality class. However, in the vicinity of the percolation transi-
tion, there is a different behavior at earlier times. By scaling arguments we show that the global scaling
exponents associated with the kinetic roughening of the interface can be obtained from the properties of the
underlying percolation cluster. Our numerical results are in good agreement with theory. However, we dem-
onstrate that at the depinning transition, the interface as defined in the models is no longer self-affine. Finally,
we compare these results with those obtained from a more realistic reaction-diffusion model of slow combus-
tion. @S1063-651X~98!08708-X#

PACS number~s!: 05.40.1j, 68.35.Rh, 82.20.Wt
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I. INTRODUCTION

Interfaces embedded in random media have receive
considerable amount of interest recently. Such diverse p
nomena as pinning of flux lines in superconductors, dyna
ics of flame fronts in paper, and imbibition all contain inte
faces propagating in random media with quenched noise@1#.
For many such cases, an equation of motion for
d-dimensional height variableh(rW,t) can be written in the
form

]h~rW,t !

]t
5n¹2h~rW,t !1

1

2
lu¹W h~rW,t !u21F1h~rW,h!, ~1!

whereF is the driving force and the noise termh represents
quenched disorder and is sufficiently short ranged.

The behavior of driven interfaces near the depinning tr
sition F→Fc at which the interface ceases to propagate
its average velocityv approaches zero has turned out to
nontrivial. In particular, there are two important universal
classes that many different models of interface dynamics
into at the depinning transition, namely, the isotropic dep
ning ~ID! or the directed percolation depinning~DPD! cases
@1–3#. Roughly speaking, models whose microscopic d
namics is isotropic belong to the ID universality class a
those with spatial anisotropy to the anisotropic universa
classes, of which perhaps the most common one is the D

*Author to whom correspondence should be addressed. Pe
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nology, P. O. Box 1100, FIN-02015 HUT, Espoo, Finland. Ele
tronic address: Tapio.Ala-Nissila@helsinki.fi
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case@3#. These universality classes can be distinguished
the values of the scaling exponents associated with the in
face near the transition as well as the behavior of the non
ear terml in the equation of motion for the interface. For th
ID case,l is kinetically generated (l;v) and vanishes a
the transition, while for the DPD case this is no longer tru

In this work we report the results of extensive numeric
simulations of some simple ‘‘forest fire’’ lattice models@4#
where an interface propagates in a uniformly random ba
ground of reactants with an average concentration 0,c,1.
This is an interesting special case of a motion of an interf
through a background medium of quenched noise, with
additional feature that there is an underlyingisotropic perco-
lation transition at some finite densityc* . Below c* , the
interface becomes pinned due to the percolation transi
and one may expect different features to arise in this clas
problems, which we call hereisotropic percolation depin-
ning. There is little work on the dynamics of interfaces
such isotropic lattice models, in particular near percolat
@1,5#. These type of models are also interesting from
point of view of recent theoretical@6–8# and experimental
@9,10# studies of dynamics of slow combustion in rando
media.

Our results indeed reveal interesting and complex beh
ior in the dynamics of the interface. Above the depinni
transition forc.c* , the kinetic roughening of the interfac
is found to be described asymptotically by the Kardar-Par
Zhang~KPZ! @11# universality class as described by Eq.~1!
with annealed, Gaussian noise. Results consistent with
KPZ universality class were also found in the simulations
Refs.@6,7# of a more realistic continuum model of slow com
bustion. On approaching the percolation transition of the
derlying lattice,l seems to decrease since the nonlinear te
is kinetically generated in the present case. We find tha
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PRE 58 1515DYNAMICS OF DRIVEN INTERFACES NEAR . . .
this regime, there is a different early-time behavior. W
show that in this case theglobal scaling exponents charac
terizing the kinetic roughening of the interface can be o
tained by utilizing results of percolation theory. In particula
this means that these exponents are completely determ
by the properties of the percolation cluster and the c
tinuum description of Eq.~1! must break down. Furthermore
we show that the interface atc* as defined in the models i
no longer self-affine, but seems to showmultiscalingsince
roughness exponents as measured numerically from diffe
correlation functions differ@12#.

The results from the discrete model are compared
contrasted with those obtained for a continuum phase-fi
model of slow combustion introduced and studied in Re
@6–8#. We find that at high concentrations well abovec* , the
two models display qualitatively similar behavior. Howeve
asc→c* , the kinetic roughening of the interface is differe
in the two models, in that there is no evidence of crossove
the continuum model. We show through an analytic ar
ment that this is essentially due to the divergence of
width of the front in the continuum model and can be und
stood in the framework of mean-field theory.

The remainder of this paper is organized as follows.
Sec. II the model is introduced and characterized in detai
Sec. III the results of extensive Monte Carlo simulations
two and three spatial dimensions are presented. Also
theory to explain the observed crossover in the dynamic
developed in this section. A comparison between the disc
and continuum models is carried out. Finally, in Sec. IV w
conclude and discuss our results.

II. ‘‘FOREST FIRE’’ MODELS

We consider the following simple forest fire~FF! cellular
automaton models@4# on square and simple cubic lattices
two and three spatial dimensions, respectively. The statu
each lattice site can be one of the following:~i! an empty
site, ~ii ! a site occupied by an unburned tree,~iii ! a site oc-
cupied by a burning tree, and~iv! a site occupied by a burne
tree. Initially, a fractionc(0,c,1) of the sites are occupie
by a tree. The initial distribution of trees is uniformly ran
dom with no spatial correlations. In the two-dimension
~2D! case the lattice is of lengthL in the x direction with
periodic boundary conditions andL8 in the y direction with
free boundary conditions. In the 3D case the lattice is
length L also in thez direction. Unless otherwise state
L8@L @13#.

The front propagation is initiated att50 by igniting all
the trees at the bottom of the lattice (y50 in two dimensions
and thexz plane in three dimensions, respectively!. The dy-
namics of the model is defined by the following set of rule
During one Monte Carlo time step, a burning tree ignites
the unburned trees in a fixed, finite region around it a
becomes a burned tree. In this work, we consider the nea
neighbor~NN! and next-nearest-neighbor~NNN! FF models
in two dimensions, and the NN model in three dimensions
burned tree will remain as such and new trees will not
generated during simulations, in contrast to several vers
of this basic model that display self-organized critical
@14#. The position of the emerging interfaceh(rW,t) at column
rW is defined as the location of the highest burning treeor the
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highest burned tree, if there are no burning trees in that
umn @15#. We note that this definition is sufficient to mak
the interface single valued.

The continuum model for which we will also prese
some different results has been introduced and studie
Refs. @6–8#. Briefly, the model is based on a phase-fie
appraoch, utilizing a set of coupled partial differential equ
tions ~PDE’s! describing the evolution of a thermal diffusio
field T(x,y) coupled to a random reactants concentrat
field c(x,y). The interplay between thermal dissipation a
reaction diffusion of heat generated by combustion de
mines the dynamics in the model. To study front propa
tion, the set of equations is discretized on a 2D lattice a
solved numerically. In analogy with the FF model, the latti
sites are randomly filled with reactants~‘‘trees’’ ! that
‘‘burn’’ according to the kinetics defined by the PDE’s. Th
main difference with respect to cellular automaton type
models is that not only is the dynamics more realistic, b
that the effective range of interactions is in part determin
by local combustion dynamics. Also, the interface in the co
tinuum model is not sharp, but can be defined through
local maximum of the temperature fieldT(x,y).

III. RESULTS

In order to quantitatively characterize the kinetic roug
ening of the interface, we have considered the followi
quantities@1,16#. First, theglobal width w(c,t,L) of the in-
terface is defined by

w2~c,t,L ![^@h~rW,t !2h~rW,t !#2&, ~2!

where the overbar denotes a spatial average over the sy
of sizeL and angular brackets denote configuration aver
ing. Correspondingly, thelocal width of the interface
wl (c,t) can be defined as

wl
2 ~c,t ![Š^@h~rW,t !2^h~rW,t !& l #2& l ‹, ~3!

where the notation̂ & l now denotes spatial averaging ov
all subsystems of sizel of a system of total sizeL. For
growing self-affine interfaces, both the global and loc
widths satisfy the Family-Viscek scaling relation@17# and
have asymptotic behavior given by

w2~ t,L !;H t2b for t!Lz

L2x for t@Lz,
~4!

and correspondingly forwl
2 (t). The quantitiesb and x de-

fine growth and roughness exponents, respectively, anx
5bz @18#. We note that in addition to using the width, sca
ing exponents can be obtained by using the height-he
difference correlation function

C~r ,t !5^dh~rW0 ,t0!2dh~rW01rW,t01t !] 2 &, ~5!

with dh[h2h̄, in the appropriate regimes@1#.

A. Dynamics of one-dimensional interfaces

In the FF models, the emerging fire sweeps through all
sites that are connected by the nearest- or next-nea
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neighbor rule throughout the system. The front motion c
thus be sustained only for lattices whose average conce
tion c is at or beyond the percolation treshold of a 2D squ
lattice, which is known to be c* '0.592 746 and
c* '0.407 254 for the NN and NNN cases, respectively@19#.
Thus the pinning of the interface belowc* is a direct con-
sequence of the static percolation transition and we call
phenomenonisotropic percolation depinning~IPD! here.
There are two competing length scales in the proble
namely, the correlation length associated with the perc
tion transitionj(c) and the lateral correlation length of th
moving interfacej uu(t) that grows liket1/z @20#. In the vicin-
ity of c*

j~c!;~c2c* !2n, ~6!

wheren defines the~static! correlation length exponent an
n54/3 in 2D percolation@19#.

In the regime where pinning effects can be neglected
has been demonstrated that the quenched noise in Eq~1!
crosses over to thermal noise@1#. In the FF models, this
sitation is realized well abovec* , wherej(c) is essentially
of the order of the lattice constant andj(c)!j uu(t) readily
holds. Indeed, in this regime we find that the interface mo
with a constant velocity and its global width roughens
ymptotically as given by Eq.~4!, with b'1/3 andx'1/2, in
accordance with the KPZ universality class. For example,
the NN model atc50.95 we obtainb50.33(1) for L
520 000 andx50.50(2) for a system size ofL55000. In
Fig. 1 we plotw(t) vs t and the effective exponentbeff(t)
5 lnw(t)/lnt that shows the asymptotic KPZ behavior. W
would like to point out that there is an initial time regim
where the width grows according to the uncorrelated rand
deposition model, withw(t);t1/2. For the NN model, this
regime is long lived only forc very close to unity@21#.

The asymptotic KPZ behavior forc.c* is not unex-
pected since the velocity of the interface in the FF model
clearly tilt dependent, which generates the nonlinear te
proportional tol in Eq. ~1!. In Fig. 2~a! we show the behav
ior of l as a function ofc abovec* for the NN case. It has
been calculated numerically by computing the average ve
ity v of the interface as a function of the global tiltm and
fitting a parabola to it form!1 @1,5#. The interesting resul
is thatl displays nonmonotonic behavior and seems to ev
tually decreasewhen approching the percolation transitio
In fact, we expect thatl(c)→0 asc→c* because the inter
face is eventually forced to propagate in the infinite perco
tion cluster, which is known to be self-similar and isotrop
at the percolation threshold@22#. Since there is no preferre
growth direction atc* , the tilting of the interface should no
affect the velocity of the interface any more.

This diminishing ofl on approachingc* means that the
nonlinear term in Eq.~1! becomes less and less important
early times wherej(c)@j uu . For the continuum description
to hold, however, the local slopes of the interface should a
remain small. We have studied this numerically for vario
values ofc close toc* , where two things can be observed f
the behavior of the global widthw(t,L). First, the range of
the late-time KPZ scaling regime becomes smaller in time
c* is approached from above. Second, another regime w
well defined power-law scaling ofw(t);tb* can be ob-
n
ra-
e

is

,
a-

it

s
-

r

m

is
m

c-

n-

-

t

o
s

s
re

served appears at earlier times. In Fig. 3~a! we show the
behavior of the global width for a system of sizeL
520 000 atc50.59 275~NN model!. We find that starting
from early times, there is a scaling regime where the grow
exponentb* 50.88(1). Simulations of the NNN model a
c50.407 give b* '0.88, correspondingly. In this regim
parts of the interface become pinned by unburned region
the lattice and the interface motion consists of large jum
with large local slopes appearing. This behavior indica
that the interfaces may not be self-affine@12#.

The numerically observed crossover behavior can be
mulated theoretically by assuming that it is induced by
underlying percolation transition. We write the followin
scaling form for the global widthw(c,t):

w~c,t !5j~c! f S t

tc
D , ~7!

wheretc denotes the crossover time to the KPZ regime a
the scaling functionf (u) has the limits

FIG. 1. ~a! Global widthw(t) vs t in two dimensions for the NN
model with c50.95 andL520000. The inset shows the effectiv
growth exponentbeff(t) vs t, wherebeff(t)[ lnw(t)/lnt. The exact
KPZ value ofb51/3 is shown by the horizontal line.~b! Global
width w(t) vs t for the 3D NN model, withc50.97 andL3L
52003200. In both cases averages were taken over 100 runs.
inset showsbeff(t), with the horizontal value indicating the KPZ
resultb'0.24.



-

e

a
th
-

he
cu
-
ca
lu

s
E

t
to

he
nly

ed

gs
on
for

cu-
of
re

nt
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f ~u!;H ub* if u!1

ub if u@1.
~8!

Hereb* '0.88 andb51/3. Using Eq.~5! for j(c) and as-
suming thattc(c);(c2c* )2D we find that best data col
lapse as shown in Fig. 4 is obtained forn51.3 and D
51.65. Takingn54/3 and the dynamic exponentz* given
by the exponentdmin'1.13 associated with the scaling of th
minimum path distance@5,23#, D5nz* '1.51. Thus our nu-
merical results are in good agreement with theory.

At c* wherej uu!j(c) for long times (t!Lz* ), the inter-
face is pinned by clusters formed by the unoccupied sites
the quenched disorder dominates. The interface follows
‘‘edge’’ of the infinite percolation cluster. The global rough
ness exponentx* can be then be directly deduced from t
geometric properties of the percolation transition. In parti
lar @5,1#, x* 5n' /n uu , wheren' andn uu are the perpendicu
lar and parallel correlation length exponents of the criti
percolation cluster, respectively. Since the percolation c
ter in the FF model is isotropic andn'5n uu5n, the rough-
ness exponentx* 51 in all dimensions. In this case, the
exponent z* 5dmin'1.13, which leads tob* 5x* /z*
51/dmin'0.88, in excellent agreement with our simulation
These results indicate that the continuum description of
~1! must break down atc* for the present IPD case@24#.

FIG. 2. ~a! l vs c in two dimensions withL52000 for the NN
lattice model. The data were averaged over 1000 runs.~b! l vsc for
the continuum model, withL5200.
nd
e

-

l
s-

.
q.

We have examined the interface roughness exponenx
numerically by studying the interface dynamics as close
c* as possible. We have computed the generalizedqth-order
height difference correlation functions

Gq~r ,t !5^@h~r ,t !2h̄~ t !#q&;r qxq for r !j uu ~9!

by running the simulation until the interface finally stops~for
a finite system! and approximately traces out the edge of t
percolation cluster. For a self-affine interface there is o
one roughness exponent and thusx5xq for all q
52,4,6, . . . . Ournumerical results for aL52000 system at
c50.5928~NN model! give thatx250.54(5), x450.29(3),
andx650.21(2). This indicates that the interface associat
with the percolation clusteras defined in the modelis not
self-affine atc* . The reason is most likely that the overhan
in the front edge of the interface that follow the percolati
cluster are removed. However, the scaling exponents
each higher-order correlation function that we have cal
lated seem to be very well defined, which is an indication
multiscaling similar to that seen in the longitudinal structu
functions in the study of turbulence@25#.

FIG. 3. ~a! w(t) vs t in the 2D NN lattice model very close to
the percolation transition (c50.592 75, L520 000). The inset
shows the effective growth exponentbeff(t) and the horizontal line
indicates the value 0.88.~b! w(t) vs t in the 3D NN lattice model
very close to the percolation transition (c50.312, L3L3L
5110031100). The inset shows the effective growth expone
beff(t) vs t and the horizontal line indicates the value 0.72.
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We have also numerically verified the scaling of the a
erage velocityv(c) of the interface as a function ofc2c*
near the percolation threshold~see Fig. 5!. It is expected to
vanish as

v~c!5A~c2c* !u. ~10!

Our data for the NN model giveA'1.14 and our best esti
mate for the velocity exponent isu50.169(5) @the NNN
model givesu50.17(5)#. In order to check the consistenc
of this result, we note that there exists a well-known scal
relation betweenu, z* , n, andx* , namely@1#,

u5~z* 2x* !n. ~11!

By using the valuesz* 51.13,x* 51, andn54/3 we obtain
u50.173. This is in very good agreement with our data.

B. Dynamics of two-dimensional interfaces

The 3D lattice model that we have studied is a sim
generalization of the 2D case to a simple cubic geome
We only consider the NN case here. The behavior of
emerging surface near the percolation threshold is qua
tively similar to the 2D case. In particular, in the long tim
limit for c.c* the interface roughens in time with th
growth exponentb50.24(2) as shown in Fig. 1~b!, in ex-
cellent agreement with numerical solutions of thed5211
KPZ equation and various discrete models that belong to
KPZ universality class@1,26,27#.

Closer to c* '0.316, we see the percolation-induc
crossover. Atc50.316 we find numerically that the interfac
roughens with a growth exponentb* 50.72(5) @Fig. 3~b!#.
Again, the exponents characterizing the interface can be
tained from the exponents of the critical percolation clus
In particular, it is reasonable to assume that the global rou
ness exponentx* 51 since the cluster is isotropic. More
over, the minimum path exponent is known ind53 to be
dmin51.38(2) and this determines the dynamic expon

FIG. 4. Crossover scaling functionf (t/tc) of the global width
w(c,t), as defined in Eq.~6!. The unscaled data for different con
centrations (c50.594, 0.60, 0.605, 0.61, 0.615, 0.62, and 0.
from top to bottom, andL51000) are shown in the inset. The da
collapse has been obtained usingn51.3 andD51.65. See the tex
for details.
-

g

e
y.
e
a-

e

b-
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h-

t

z* 5dmin @23#. As a consistency check, taken together w
the result thatx* 51, this implies that, at depinning trans
tion, b* 5x* /z* '0.724. Our direct evaluation ofb agrees
very well with this prediction. We expect again that the i
terface as defined in the 3D model is not self-affine atc* ;
however, we have not computedx* numerically.

We have also calculated the velocity exponent and fi
u50.26(2). Using the scaling exponent relationu5(z*
2x* )n with z* 51.38,x* 51, andn50.88 givesu50.33,
which is in reasonably good agreement with our data.

C. Flame front propagation in the continuum model

We have compared the dynamics of interface of the lat
model with a more realistic continuum reaction-diffusio
model of Refs.@6,7#. This model is a type of phase-fiel
model that couples the evolution of a thermal diffusion fie
to a randomly distributed concentration field of reactan
The model couples the effects of thermal dissipation a
diffusion to heat generated by combustion via an Arrheni
activated reaction term. To study front propagation,
model is discretized on a 2D lattice and solved numerica

,

FIG. 5. ~a! Scaling of the interface velocityv vs c2c* for the
2D NN lattice model, withL52000. The straight line shows th
best fit to the data, withu50.169 in Eq.~9!. ~b! Scaling of the
interface velocityv vs c2c* for the 3D NN lattice model, with
L3L51003100. The straight line shows the best fit to the da
with u50.26. The error bars here are smaller than the symbol si
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In analogy with the FF model, the lattice sites are random
filled with reactants~trees!, with an average normalized con
centration ofc[c(x,y)̄ . After ignition of the bottom row of
reactants att50, the heat generated will ignite other occ
pied lattice sites around it and the local fieldc(x,y) corre-
sponding to the sites of the burning reactants will quic
approach zero as determined by the equations. A sin
valued interface in the model is defined by the maximum
the temperature fieldT(x,y) for each columnx.

Previously, it was shown that that the kinetic roughen
of the flame fronts generated by the continuum model bel
to the thermal KPZ universality class@6,7#. In the limit of
almost uniform background density, the KPZ descripti
was also derived analytically from the set of equations
the model@7#. The main difference with respect to the F
lattice model was that even very close to the percolat
threshold of the modelc* '0.20, there was no evidence o
percolation induced crossover. Also, the continuum mo
nearc* gave results that were consistent with the mean-fi
theory of percolation, e.g.,n'0.5 andu'0.5 @7#.

In Fig. 2~b! we show the behavior of the nonlinear coe
ficient l for the continuum combustion model. Similarly t
the FF lattice model, we find thatl approaches zero forc
→c* . However, unlike the the lattice model, no crossov
behavior is observed asc→c* . This is explained as follows
From the mean-field analysis of Ref.@7#, the leading front of
the thermal field decays as

TMF~x!;e2x/ l D, ~12!

wherel D5D/vm is the thermal diffusion length defining th
range of effective interactions in the model and thus also
scale of the intrinsic thickness of the interfacewint . The
constantsvm andD are the mean interface velocity and the
mal diffusion constant, respectively. Using the result t
vm;(c2c* )0.5, we conclude thatwint;(c2c* )20.5. On the
other hand, in the mean-field percolation transition the c
relation length scales asj(c);(c2c* )20.5. These results
imply that the thickness of the interface hasthe same diver-
genceas the correlation length, within which the crossov
behavior should be observed. Thus everything that happ
on length scales smaller thanwint will be smeared out. There
fore, due to the increasing thickness of the interface,
second regime at early times is never observed.
.
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IV. SUMMARY AND DISCUSSION

In this work we have studied the dynamics of interfaces
random media through Monte Carlo simulations of some d
crete cellular automaton models of forest fires. We find t
away from the depinning transition induced by the isotro
percolation transition of the underlying lattice, the kine
roughening is asymptotically described by the Kardar-Par
Zhang@11# universality class. In the vicinity of the IPD tran
sition, however, the behavior is found to be different. At t
transition, theglobal roughness exponentx* and the growth
exponentb* are completely determined by the geomet
properties of the percolation transition, leading to the res
thatx* 51 andb* 51/dmin in all dimensions. We have veri
fied this numerically for the exponentb* in the 2D and 3D
cases. However, by computing the roughness exponent o
interface from different correlation functions, we find th
the interface is no longer self-affine, but seems to indic
multiscaling. This is most likely due to the removal of ove
hangs in the way the interface is defined in the models.

A comparison between the lattice models and the m
realistic model of Refs.@6–8# was made and qualitatively
similar behavior was found at high concentrations. Intere
ingly, however, the two models displayed qualitatively d
ferent behavior forc→c* . In particular, the exponents com
patible with the KPZ universality were shown to hold for a
values ofc studied in Refs.@6,7#. We demonstrate that thi
can be understood on the basis of the mean-field natur
the percolation transition exhibited by the continuum mod

The models studied here are particularly interesting fr
the point of view of the recent experiments on slow comb
tion of paper@10,28#. In these experiments, asymptotic KP
exponents were verified for driven interfaces. This is in co
plete agreement with all the models here well above per
lation, as well as the DPD universality class. Near perco
tion, the assumption made on the basis of the ear
experiments by Zhanget al. @9# has been that DPD effect
dominate@1#. However, the most recent experiments indica
@28# that the effective short-range exponents before KPZ
ymptotics may not be well defined.
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